Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Pathol ; 192(6): 956-969, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35339427

RESUMO

It is well recognized that clearance of bacterial infection within the dental pulp precedes pulpal regeneration. However, although the regenerative potential of the human dental pulp has been investigated extensively, its antimicrobial potential remains to be examined in detail. In the current study bactericidal assays were used to demonstrate that the secretome of dental pulp multipotent mesenchymal stromal cells (MSCs) has direct antibacterial activity against the archetypal Gram-positive and Gram-negative bacteria, Staphylococcus aureus and Escherichia coli, respectively, as well as the oral pathogens Streptococcus mutans, Lactobacillus acidophilus, and Fusobacterium nucleatum. Furthermore, a cytokine/growth factor array, enzyme-linked immunosorbent assays, and antibody blocking were used to show that cytokines and growth factors present in the dental pulp MSC secretome, including hepatocyte growth factor, angiopoietin-1, IL-6, and IL-8, contribute to this novel antibacterial activity. This study elucidated a novel and diverse antimicrobial secretome from human dental pulp MSCs, suggesting that these cells contribute to the antibacterial properties of the dental pulp. With this improved understanding of the secretome of dental pulp MSCs and its novel antibacterial activity, new evidence for the ability of the dental pulp to fight infection and restore functional competence is emerging, providing further support for the biological basis of pulpal repair and regeneration.


Assuntos
Antibacterianos , Células-Tronco Mesenquimais , Antibacterianos/farmacologia , Polpa Dentária , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Humanos , Células-Tronco Mesenquimais/metabolismo , Secretoma
2.
Pharmaceuticals (Basel) ; 14(11)2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34832855

RESUMO

This study investigates the role of transient receptor potential ankyrin 1 (TRPA1) in murine temporomandibular joint (TMJ) inflammatory hyperalgesia and the influence of the NLR family pyrin domain-containing 3 (NLRP3) inflammasome. Two distinct murine models of TMJ pain and inflammation (zymosan and CFA) were established. Spontaneous pain-like behaviours were observed as unilateral front paw cheek wipes. Ipsilateral cheek blood flow was used as a measure of ongoing inflammation, which, to our knowledge, is a novel approach to assessing real-time inflammation in the TMJ. Joint tissue and trigeminal ganglia were collected for ex vivo investigation. Both zymosan and CFA induced a time-dependent increase in hyperalgesia and inflammation biomarkers. Zymosan induced a significant effect after 4 h, correlating with a significantly increased IL-1ß protein expression. CFA (50 µg) induced a more sustained response. The TRPA1 receptor antagonist A967079 significantly inhibited hyper-nociception. The NLRP3 inhibitor MCC950 similarly inhibited hyper-nociception, also attenuating inflammatory markers. In the trigeminal ganglia, CFA-induced CGRP expression showed trends of inhibition by A967079, whilst lba1 immunofluorescence was significantly inhibited by A967079 and MCC950, where the effect of TRPA1 inhibition lasted up to 14 days. Our results show that stimulation of TRPA1 is key to the TMJ pain. However, the inflammasome inhibitor exhibited similar properties in attenuating these pain-like behaviours, in addition to some inflammatory markers. This indicates that in addition to the therapeutic targeting of TRPA1, NLRP3 inhibition may provide a novel therapeutic strategy for TMJ inflammation and pain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...